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EXECUTIVE SUMMARY 

The aim of this report is to describe an innovative approach to proportioning concrete mixtures 

that can provide guidance for concrete producers, specifiers, contractors, and engineers. 

Although the provided guidance in this report is primarily for concrete pavements, a similar 

approach can be applied to other concrete applications.  

The concept is to proportion concrete mixtures in three iterative steps:  

1. Select the aggregate system. 

2. Select the quality of the paste. 

3. Select the relative volumes of paste and aggregate. 

The selection of aggregate system includes consideration of the following factors (among others 

not included in this work, such as durability): 

 The gradation of the system should aim to achieve close to maximum density while still 

providing good workability and finishability. 

 The voids between consolidated combined aggregate particles should be determined.  

Selection of the paste systems for the desired performance criteria includes the following:  

 Selection of a binder system of portland cement and supplementary cementitious materials 

(SCMs) to achieve desired performance, including durability and strength, using locally 

available materials 

 Selection of an air void system to protect the system from frost effects 

 Selection of the water-to-cementitious materials ratio (w/cm) to achieve required 

performance 

Selection of the paste volume is based on providing sufficient paste in the mixture to fill all of 

the voids between the aggregates and a certain amount more to achieve workability goals. 

Insufficient paste leads to poor workability and an inability to fully consolidate the samples, 

which leads to very poor permeability and strength. Laboratory testing data also indicated that 

excess paste leads to a reduction in permeability and strength performance. Based on laboratory 

testing, it was observed that the preferred amount of paste is dependent on the aggregate 

mineralogy, size, and gradation. The desired ratio of paste to aggregate voids was found to be in 

the range of 1.25 to 1.75. 

A spreadsheet has been developed to help users conduct the proportioning process based on this 

approach. 
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INTRODUCTION 

Mixture proportioning is routinely a matter of using a recipe based on a previously produced 

concrete, rather than adjusting the proportions based on the needs of the mixture and the locally 

available materials (Lee et al. 2009, Ji et al. 2006). However, concrete is a heterogeneous and 

complex material in which there are multiple interactions between its components. It is well 

documented (Yurdakul et al. 2012, Hu and Wang 2011, Ashraf and Noor 2011, Wassermann et 

al. 2009, Kim et al. 2005, Jamkar and Rao 2004) that overall concrete performance is affected by 

the nature of the mix components and their quantities. Each mix component has an impact on 

both fresh and hardened concrete properties, albeit at varying levels. For example, when every 

other parameter is kept constant, increasing water content increases the workability, whilst 

adversely affecting concrete strength and durability due to the increased capillary porosity 

(Popovics 1990, Kennedy 1940, Abrams 1920). Furthermore, in addition to the individual effect 

of each mix component on concrete performance, the interactions between these variables also 

affect the concrete properties. Concrete mixture proportioning, therefore, has to be a well-

thought and iterative process that often requires decisions to balance mutually exclusive 

requirements for workability, durability, and cost effectiveness. 

Another challenging issue is that many mixture specifications are predominantly prescriptive-

based and may promote the use of higher amounts of some materials than needed. Such 

approaches may result in increased cost and potentially reduced durability and longevity due to 

effects such as shrinkage-related cracking (Yurdakul et al. 2012, Grove and Taylor 2012, Lee et 

al. 2009, Shilstone and Shilstone 2002). Using excessive amounts of some materials, such as 

cement, also has a negative impact on the environment because cement production results in 

carbon emissions and energy consumption. Therefore, a performance-based mixture 

proportioning method is needed to fulfill the desired concrete properties for a given project 

specification. The proposed method should be user friendly, easy to apply in practice, and 

flexible in terms of allowing a wide range of material selection.  

The objective of this study is to further develop an innovative performance-based mixture 

proportioning method by analyzing the relationships between the selected mix characteristics and 

their corresponding effects on tested properties. The proposed method will provide step-by-step 

instructions to guide the selection of required aggregate and paste systems based on the 

performance requirements of concrete pavements.  
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BACKGROUND 

What is Mixture Proportioning? 

Mixture proportioning is the process of determining the required quantities of concrete 

components to achieve the specified concrete properties (Taylor et al. 2006). The critical aim of 

mixture proportioning is to ensure that “it fits for the purpose for which it is intended and for the 

expected life during which it is to remain in service” (Neville 2000). In addition, the mixture 

proportions should be optimized for economy and sustainability.  

Moving from Prescriptive toward Performance-based Specifications 

Currently, many concrete mixes are proportioned based on recipes that have been used before 

and/or on prescriptive-based specifications. These specifications define the limits on the type, 

amount, and proportions of the mix components to ensure that the performance is met 

(Ozyildirim 2011). To ensure the quality and performance of concrete, the minimum 

compressive strength, maximum water-to-cementitious materials ratio (w/cm), replacement level 

of supplementary cementitious materials (SCMs), and minimum cementitious materials content 

are often specified, regardless of the aggregate system in use. This has the potential to increase 

the cost and carbon footprint of concrete (Lobo et al. 2006). In addition, setting a limit on the 

minimum cementitious materials content may increase heat generation and shrinkage, thus 

leading to cracking and thereby compromising the longevity of concrete pavements (Ozyildirim 

2011, Obla 2006). Studies (Chamberlin 1995) have shown that mixes designed by following the 

prescriptive-based specifications do not always provide the desired end results, leading to 

increased maintenance costs. In addition, many proportioning approaches were developed before 

water-reducing admixtures and supplementary cementitious materials were in common usage 

(Grove and Taylor 2012).  

Current prescriptive-based specifications deliberately promote overdesigning mixes by using 

cement content as a safety factor. This has the effect of adversely affecting the environment 

because of the CO2 footprint associated with manufacturing portland cement (Hendriks et al. 

2004, Battelle Memorial Institute 2002). Therefore, developing a mixture proportioning method 

that is based on performance criteria and does not limit the efficient use of materials will be 

beneficial in improving sustainability.  

As budgets grow tighter and increasing attention is being paid to sustainability metrics, greater 

attention is beginning to be focused on making mixtures that are more efficient in their usage of 

materials without compromising engineering performance. Therefore, the construction industry 

has been moving from prescriptive towards performance-based specifications (Bickley et al. 

2010, Lobo et al. 2006, Day 2006, Taylor 2004).  

A number of challenges are slowing the development of more performance-based specifications 

and mixtures in the U.S. market despite the available technology. These include the following:  
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 Resistance to change: The resistance to change is mostly due to the fact that prescriptive-

based specifications have been used by agencies since the early 1900s; thus, most state 

agencies and contractors are very familiar with these recipe-type specifications and have little 

experience with performance-based specifications (Falker 2003, Kopac 2002). 

 Resistance to any change in the distribution of risk: In concrete pavement construction, risk 

can be defined as the responsibility for the long-term performance of the pavement. In 

prescriptive-based specifications, agencies take almost 100% of the risk because as long as 

contractors properly follow the step-by-step instructions, they often are not held responsible 

for the quality and performance of the end product after the concrete is placed and 

construction has been approved (Falker 2003). However, in performance-based 

specifications, contractors are responsible because the approval criteria for construction are 

based on the performance of the end product.  

 A lack of good performance tests: One of the major barriers in adopting performance-based 

specifications is the lack of good performance tests that are reliable, inexpensive, consistent, 

and standardized to measure concrete performance in a timely manner (Hooton and Bickley 

2012).  

In addition to the listed factors, misconceptions regarding the relationship between mix 

components and their effect on concrete properties also hinder the implementation of 

performance-based specifications. These misconceptions are provided below.  

Misconception 1: Increasing Cement Content Increases Concrete Strength  

Cement, the main component of concrete, is a common material used in many kinds of 

construction. Cement content is perceived to control concrete strength. Based on this perception, 

a minimum cement content is often specified that may exceed the amount needed to achieve the 

desired strength and durability. For example, in the U.S. many state departments of 

transportation (DOTs) and other agencies specify a minimum cement content between 550 and 

600 lb./yd.
3
 for slip-form pavement mixtures, as presented in Table 1 (Rudy 2009).  

However, these cement contents are often conservative and may exceed the amount needed for 

the desired strength and durability. Previous studies (Popovics 1990, Wasserman et al. 2009) 

suggest that once the cement content reaches an optimum value, using more cement does not 

achieve higher strength for a given w/cm. In addition, increasing cement content will cause the 

concrete to become sticky, increase permeability, and increase the risk of shrinkage and cracking 

problems. Therefore, cement content should be balanced to achieve the desired performance 

while minimizing the risk of these problems. 

  



4 

Table 1. Minimum cement content specifications for slip-form paving mixtures (after Rudy 

2009) 

State 
Minimum cement content  

for plain concrete (lb./yd.
3
) 

Illinois (ILDOT 2007) 565 

Indiana (INDOT 2008) 564 

Iowa (Iowa DOT 2008) 573 

Kansas (KDOT 2007) 521 

Michigan (MDOT 2003) 564 

Missouri (MoDOT 2008) 560 

New York (NYSDOT 2008) 605 

Ohio (ODOT 2008) 600 

Pennsylvania (PennDOT 2009) 587 

Virginia (VDOT 2007) 564 

Wisconsin (WisDOT 2008) 565 

 

Misconception 2: Strength Correlates with Durability 

Strength is often used as a quality indicator for the overall performance of a mixture. While 

strength is important for structural performance, it has no direct correlation with durability. 

Potential durability can be defined as the concrete’s capability of maintaining the serviceability, 

in a given environment, over its design life without significant deterioration (Alexander and 

Beushausen 2010, Shilstone and Shilstone 2002). While there may be a general trend that both 

properties improve in the same direction, it is not conservative to predict potential durability 

from strength or vice-versa. Therefore, meeting strength requirements does not necessarily 

ensure the concrete will have the required durability (Obla et al. 2005). 

Misconception 3: Supplementary Cementitious Materials Dilute Concrete Properties 

Some engineers and contractors are cautious about using supplementary cementitious materials, 

especially when used in ternary blended concrete mixtures (a combination of three cementitious 

materials that are blended to balance fresh properties, durability, strength, and economy). This is 

because it is perceived that incorporating supplementary cementitious materials adversely affects 

concrete properties, for example by causing low early strength, increasing plastic shrinkage 

cracking, and extending time of setting (Tikalsky et al. 2011). While these situations may be 

true, it is well documented (Liu et al. 2012, Bagheri and Zanganeh 2012, Johari et al. 2011) that 

supplementary cementitious materials generally also do the following: 

1. Improve the workability of concrete 

2. Decrease the tendency of the concrete to bleed and segregate by enhancing the packing 

density 
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3. Reduce the pore size and porosity of both the cement matrix and the interfacial transition 

zone, thereby increasing performance 

4. Increase the ultimate durability in terms of decreasing permeability 

5. Reduce alkali-aggregate expansion 

 

The negative side effects can normally be compensated for by modifying mixture proportions 

and practices on the construction site. In situations when incorporating high amounts of a single 

type of SCM (binary mixtures) results in unacceptable side effects such as extended setting time, 

ternary mixtures can be used to balance fresh and hardened properties (Schlorholtz 2004, 

Tikalsky 2012).  

Mixture Proportioning Procedure 

Concrete may be considered to comprise two fractions: paste and aggregates. The mixture 

proportioning procedure discussed below was developed based on evaluating and selecting the 

paste and aggregate systems separately, followed by analysis of the interactions between them. 

The fundamental philosophy is that the aggregate system is largely responsible for the 

workability of the fresh concrete, while the quality of the paste system is the primary controller 

of long-term performance, assuming the aggregates are durable. The relative volumes of the two 

systems are balanced to achieve the desired overall performance, including sustainability-based 

parameters. 

Selection of the Aggregate System 

Aggregates occupy up 60% to 90% of the total volume of concrete (Ashraf and Noor 2011). 

Despite this high percentage in concrete, specifications mostly focus on the minimum 

cementitious materials content, maximum water-to-cementitious materials ratio, and strength of 

concrete (Ley et al. 2012). According to a study conducted by Dhir et al. (2006), aggregate 

properties have a greater impact on many aspects of performance than changing cement content 

at a given w/cm ratio. Concrete properties such as workability and resistance to bleeding and 

segregation are greatly affected by aggregate size, gradation, particle shape, surface texture, 

porosity, void content, specific gravity, absorption, and impurities (Alexander and Mindess 2005, 

Smith and Collis 2001). For example, spherical, well-rounded, smooth-surfaced aggregates 

increase workability, whereas angular, elongated, rough-surfaced aggregates decrease 

workability. Recent work by Ley (2104) has indicated that optimum workability performance 

can be achieved by holding the combined gradation within an envelope called the “Tarantula 

Curve”. 

The volume of voids remaining in a fully compacted aggregate system is a key factor in 

determining the paste volume requirements (Koehler and Fowler 2006). Therefore, instead of 

considering the voids of the fine, intermediate, and coarse aggregates separately, the voids 

between the combined compacted aggregates are determined. 
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Selection of the Paste System 

The paste system should be selected to achieve all of the required performance criteria. Mix 

components such as type and amount of cementitious materials, w/cm, the presence of chemical 

admixtures, and target air content all influence strength and durability performance. 

Air is considered part of the paste in order to keep the model a little simpler. Varying air content 

in a batch will markedly affect the paste volume, but this approach is considered adequate for a 

design application. 

For example, as w/cm decreases, the porosity of the paste decreases, and concrete becomes less 

permeable, thereby resulting in increased strength and enhanced durability (Wassermann et al. 

2009, Dhir et al. 2004). On the other hand, having a good air void system increases durability 

when concrete is subjected to freezing and thawing conditions and improves the workability and 

consistency of concrete mixtures by increasing the paste volume for a given w/cm (Kosmatka et 

al. 2008, Taylor et al. 2006). However, increasing air (particularly the large voids) can adversely 

affect strength due to the increased porosity. 

Selection of the Paste Volume 

In concrete mixes, enough cement paste should be provided to not only fill the voids between 

aggregates but also to cover the aggregates and separate them to reduce the inter-particle friction 

between aggregates when the mixture is in the fresh state (Kosmatka et al. 2008, Koehler and 

Fowler 2007, Hu and Wang 2007, Ferraris and Gaidis 1992, Kennedy 1940). This is known as 

“excess paste theory” (Kennedy 1940). Therefore, a new parameter is needed that integrates the 

required amount of paste with the aggregate system. This study applies a new concept by using 

the parameter of paste-to-voids volume ratio (Vpaste/Vvoids).  

The Vpaste/Vvoids is calculated by calculating the paste volume of concrete mixtures and dividing 

that value by the volume of voids between the combined compacted aggregates. The paste 

volume includes the volume of water, cementitious materials, and measured air in the system. 

The voids refer to the space between the compacted combined aggregates that is determined by 

following the procedure in ASTM C29 (2009). 

The following section describes work conducted in the laboratory aimed at developing the 

information needed to be able to apply this approach to concrete mixtures. 
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LABORATORY WORK – PHASE 1, PASTE QUALITY AND QUANTITY 

A wide range of laboratory tests were conducted to provide background data to support the 

proposed proportioning method. The first phase comprised work using a fixed aggregate system 

to assess the paste-related issues. 

Cementitious Materials 

A single batch of the following cementitious materials was obtained:  

 ASTM C150 Type I ordinary portland cement  

 ASTM C618 Class F fly ash  

 ASTM C618 Class C fly ash 

 ASTM C989 Grade 120 slag cement 

The chemical composition of the cementitious materials is presented in Table 2.  

Table 2. Chemical composition of the cementitious materials, % by mass 

Chemical composition 

Type I  

cement 

Class F  

fly ash 

Class C  

fly ash 

Slag  

cement 

Silicon dioxide (SiO2) 20.13 52.10 36.70 37.60 

Aluminum oxide (Al2O3) 4.39 16.00 20.10 9.53 

Ferric oxide (Fe2O3) 3.09 6.41 6.82 0.44 

Calcium oxide (CaO) 62.82 14.10 23.30 40.20 

Magnesium oxide (MgO) 2.88 4.75 4.92 11.00 

Sulfur trioxide (SO3) 3.20 0.59 1.88 1.14 

Potassium oxide (K2O) 0.57 2.36 0.48 0.44 

Sodium oxide (Na2O) 0.10 1.72 1.62 0.45 

Loss on ignition 2.55 0.09 0.25 0.00 

 

Aggregates 

 One in. nominal maximum size crushed limestone 

 No 4 sieve size nominal maximum size river sand  

Chemical Admixtures 

 ASTM C494 Type F polycarboxylate-based high-range water-reducing admixture (HRWRA) 

 ASTM C260 tall oil–based air-entraining admixture (AEA) 
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Mixtures 

In this phase, the results of 118 mixes are presented to assess the effects of various mix 

characteristics on performance. The details of the mix characteristics are presented in Table 3. 

Table 3. Mix characteristics selected for the experiment 

Mix characteristics 

Selected  

values 

Portland cement  100%  

Class F fly ash 

15%  

20% 

30% 

Class C fly ash 

15%  

20% 

30% 

Slag cement 
20% 

40% 

Cementitious materials  

content (lb./yd.
3
) 

400 

500 

600 

700 

w/cm 

0.35 

0.40 

0.45 

0.50 

Air content (%) 

2 

4 

8 

Coarse aggregate size (in.) 1 

Coarse aggregate type 
Crushed  

limestone 

Fine aggregate type River sand 

 

Experimental Work 

The commonly used performance criteria for concrete mixtures are durability, strength, 

constructability (workability, placeability, and finishability), and appearance (surface texture) 

(Shilstone and Shilstone 2002). Therefore, performance was evaluated by conducting tests such 
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as rapid chloride penetration, surface resistivity, air permeability, compressive strength, air 

content, workability, and setting time. A summary of the tests conducted is provided in Table 4. 

Table 4. Test matrix 

Concrete properties Method Age (days) 

Slump ASTM C143 - 

Air content ASTM C231 - 

Setting time ASTM C403 - 

Compressive strength ASTM C39 28 

Rapid chloride penetration ASTM C1202 28, 90 

Surface resistivity AASHTO TP-95 28, 90 

Air permeability University of Cape Town 28, 90 

 

Results and Discussion 

Selecting the Aggregate System  

Choosing the Size and Shape of Aggregates 

From a workability point of view, rounded aggregates are preferred. However, considering that 

the slump requirement of concrete pavements is relatively low compared to that of other types of 

construction, and because the desired slump range can still be achieved with angular particles, 

crushed limestone is generally preferred because it leads to higher strength in pavements (Taylor 

et al. 2006). Therefore, in this study, due to their availability and their common use in concrete 

pavements, crushed limestone as the coarse aggregate and river sand as the fine aggregate were 

selected to achieve the desired fresh and hardened properties. 

Combined Aggregate Gradation 

The use of well-graded aggregate particle distribution has received attention in recent years due 

to the efforts of reducing the costs and improving the sustainability of concrete mixtures (Ley et 

al. 2012). Optimum combined aggregate gradation is important because concrete produced using 

well-graded aggregates minimizes the paste requirement, has less water demand, maintains 

adequate workability, requires less finishing time, consolidates without segregation, positively 

impacts the air-void structure of the paste, and improves both strength and long-term pavement 

performance (Delatte 2007, Kohn and Tayabji 2003).  

The gradation of the selected fine and coarse aggregates was combined and plotted using various 

charts to determine the best combination for this research study. According to the FHWA 0.45 

power curve (Bureau of Public Roads 1962), Shilstone workability factor chart, and specific 

surface charts shown in Figure 1 (a through c), the fine aggregate-to-total aggregate ratios of 
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0.45, 0.42, and 0.39, respectively, resulted in the best fitting combination. The fine aggregate-to-

total aggregate ratio was selected as 0.42 by mass based on the average of these three charts. The 

appropriateness of the selected aggregate distribution of 42% fine aggregate and 58% coarse 

aggregate was checked by plotting the data in an ASTM C33 (2013) plot (Figure 1-d) and a 

“haystack” plot (Figure 1-e).  

 

Figure 1. Combined aggregate gradation curves 

The haystack plot did not present an ideal combination, but was the best combination that could 

be achieved with the materials available. While not ideal, this type of gradation is common in 

many concrete pavement mixtures, especially given the fact that, for concrete pavement 

mixtures, an aggregate distribution of 60% coarse aggregate and 40% fine aggregate, regardless 
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of gradation and availability of aggregates, has been used as the norm (Ley et al. 2012). 

Therefore, the fine aggregate-to-total aggregate ratio of 0.42 is an appropriate combination for 

this research study.  

Voids in the Selected Aggregate System 

The voids in the combined aggregate system were determined following a modified version of 

the procedure in ASTM C29 (2009). The difference between ASTM C29 and the procedure 

followed in this study is that ASTM C29 calculates the void content for a single aggregate type 

(either for fine or coarse aggregate individually), whereas in this study combined aggregate 

systems were tested. The void percentage of the combined aggregates was kept constant at 

19.8% (average value of three repeats) for all the mixtures based on the selected fine-to-total 

aggregate ratio of 0.42. 

Selecting the Paste System 

The variables used to investigate the paste system are summarized in Table 3. The ranges of 

variables were selected to include the extreme ends of the spectrum to clearly show their effects 

on the tested properties. The results are presented based on the parameter of Vpaste/Vvoids to 

determine the paste volume required to fill the voids between aggregate particles, coat the 

surfaces of the aggregates, and lubricate the aggregates to provide adequate workability. 

Required Paste System for Desired Workability 

It is a common practice to increase the workability by adding water to make the finishers’ job 

easier. However, added water negatively affects the w/cm and decreases the resistance against 

segregation.  

If high workability is desired, to maintain the required w/cm and prevent segregation, water-

reducing admixtures (WRAs) may be used because they decrease the yield stress while having a 

minor effect on viscosity. However, Figure 2 illustrates that if there is insufficient water (paste) 

in the system, WRAs provide little benefit. When the water content was lower than 200 lb./yd.
3
, 

all the mixes exhibited a 2 in. or lower slump, regardless of the cementitious materials type and 

WRA dosage. However, as the water content was increased above 200 lb./yd.
3
, increasing water 

content increased slump, as expected. The degree of improvement for workability was affected 

by the type of the cementitious material and admixture dose. 
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Figure 2. Effect of water content on workability 

For concrete pavements, the desired slump often ranges between 1 and 3 in. Mixes performing 

within this range are presented in Figure 3.  
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Figure 3. Required paste system for workability 

The target slump was selected as 2 in., and HRWRA was added, as needed up to the 

manufacturer’s maximum recommended dosage, to achieve the target slump. It was notable that 

a minimum amount of water was required in the system to achieve any workability. Only when 

that value was exceeded could the water-reducing admixtures be used to increase slump. Despite 

the addition of HRWRA and the use of SCMs, mixes having Vpaste/Vvoids lower than 1.25 resulted 

in zero slump. This indicates that a minimum of 1.25 times more paste than the voids between 

the aggregate particles is required to achieve a workable mix. Below this number, even a high 

dosage of HRWRA cannot contribute to workability due to an insufficient amount of paste 

(Figures 2 and 3). This is illustrated in the images of cylinders made from mixtures with 

increasing paste content in Figure 4. Those with insufficient paste could not be consolidated. 
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Figure 4. Cylinders made with mixtures with increasing cementitious content from 400 to 

700 lb./yd.
3
 

Depending on the SCM type and replacement level, Vpaste/Vvoids within the range of 1.5 to 2.5 is 

sufficient to provide the desired slump for concrete pavements for the aggregate systems tested 

in this study. In the plain concrete mixtures, this range was about 1.75 to 2.25. However, for 

mixtures containing fly ash, the Vpaste/Vvoids limit was decreased to 1.5 due to the beneficial effect 

of the fly ash. For mixes containing slag cement, the desired slump of 1 to 3 in. was obtained 

when Vpaste/Vvoids was around 2 to 2.5. Slag cement required slightly higher paste quantity to 

achieve the desired slump, likely due to higher fineness and thus higher water demand (Hale et 

al. 2008).  

Required Paste System for Setting Time 

From the contractor’s point of view, initial set is important because it provides information 

regarding when the contractor can finish, texture, and saw-cut concrete pavements. The final set 

time is also important, because it indicates an estimate of the time when the pavement can 

sustain a certain degree of load. This study analyzed both the initial and final set time of mixes 

containing various types and amounts of SCMs to determine the required paste quantity for the 

desired set time. The test results of the initial and final set time are shown in Figures 5 and 6, 

respectively.  
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Figure 5. Required paste system for initial set time 
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Figure 6. Required paste system for final set time 
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Figures 5 and 6 show that increasing the paste quantity did not affect set time. However, mixes 

where the paste quantity was increased due to increasing the w/cm exhibited higher setting time. 

This result is expected because it is well documented (Wenglas 2008, Schindler 2002) that 

increasing w/cm results in a greater distance between cement particles; thus, it takes longer for 

hydration products to interlock. 

The addition of both Class C and Class F fly ashes increased the setting time compared to the 

control mixture, likely as a result of their dilution of the portland cement (Fajun et al.1985). 

Therefore, mixtures containing fly ash could be used in hot weather concrete pavements because 

the addition of fly ash may help lower the rate of setting. However, they should be used carefully 

in cold weather because their use would result in delaying the finishing operation and opening to 

traffic (Juenger et al. 2008). On the other hand, the addition of slag cement resulted in similar 

setting times to the control mixture. This result is consistent with the literature (Tikalsky et al. 

2011).  

Although changing the replacement level of SCM slightly affected the set time of concrete 

having Class C and Class F fly ashes, it did not affect the slag mixtures. This information is 

consistent with the finding by Hooton (2000) that slag does not delay setting above the threshold 

temperature of 68°F (20°C). Further increasing the paste quantity did not significantly affect the 

set time.  

Required Paste System for Compressive Strength 

The 28-day compressive strength data is presented in Figure 7.  
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Figure 7. Required paste system for 28-day compressive strength 

As shown, increasing paste content increased strength up to a plateau, after which strength was 

not improved by further increasing the paste content. In some cases, increasing paste content 

slightly decreased the compressive strength, likely due to not all of the cementitious materials 

participating in the pozzolanic reaction (Liu et al. 2012). Therefore, this elbow-shaped trend 

shows that there is a need to determine the Vpaste/Vvoids to ensure that strength is not being 

compromised by further increasing the paste content.  

The mixtures containing Class C fly ash exhibited similar strengths to the control mixtures at 28 

days. However, due to the slow pozzolanic reactivity of Class F fly ash, they exhibited lower 28-

day compressive strengths compared to the control mixtures. Similarly, increasing the slag 

cement replacement dosage did not significantly affect the 28-day compressive strength (Hooton 

2000). Increasing the replacement level of fly ash also did not significantly affect the 

compressive strength. 

For concretes containing plain portland cement or portland cement with Class C fly ash, strength 

continues to increase as the paste volume increases until Vpaste/Vvoids reaches about 1.50. For 

mixes including slag cement or Class F fly ash, strength continues to increase until Vpaste/Vvoids 

reaches about 1.75 to 2.0. This is because there is a need for sufficient paste content to fully coat 

the aggregates and lubricate them. However, after exceeding a Vpaste/Vvoids value of 2, strength 

begins decreasing with a further increase in paste quantity. Therefore, the paste volume should 

not be more than double the voids volume within the combined aggregate system to achieve the 

desired strength for pavements. 
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Required Paste System for Chloride Penetration Resistance 

The effect of the paste system on 28-day and 90-day rapid chloride penetration is presented in 

Figure 8.  

  

Figure 8. Required paste system for 28-day and 90-day chloride penetration resistance 

Hydration and the incorporation of SCMs, especially at later ages, helped to fill some of the 

capillary voids and reduce penetrability. The mixtures containing slag cement exhibited the 

lowest penetration compared to the plain mixes at 28 days. This is likely because slag cement 

immobilizes the chloride ions by binding with them (Soutsos 2010). Mixes with Class C fly ash 

and Class F fly ash did not exhibit improved resistance against chloride penetration at 28 days, 

likely due to the initially slower hydration rate of fly ash. However, at 90 days, plain concrete 

showed higher penetrability than mixtures with Class F fly ash. This result is not surprising 

because increasing the testing age of the mixes incorporating SCMs reduces the porosity of the 

concretes as a result of the continued pozzolanic reaction (Bagheri and Zanganeh 2012, Liu et al. 

2012). Fly ash produces its beneficial effects by combining with the calcium hydroxide, 

converting it to more durable calcium silicates, and reducing permeability through denser 

packing (Soutsos 2010). Fly ash also contains oxides of alumina, which are able to bind chloride 

ions. The reduction in penetration of concretes containing SCMs may also be due to their 

contribution to improving the interfacial transition zone between the cement paste and aggregates 

(Toutanji et al. 2004). 

Increasing Vpaste/Vvoids increased the chloride penetrability, which is consistent with the literature 

(Arachchige 2008). This can be explained by the differences between aggregate and paste. In 

general, aggregates are likely to be denser than cement paste (especially at early ages) and have a 

lower permeability than cement paste, so concretes with low paste content tend to have lower 
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permeability, despite the introduction of the more porous interfacial transition zones (Scrivener 

and Nemati 1996). Therefore, it is ideal to keep the Vpaste/Vvoids at a (practical) minimum from a 

durability perspective. 

Required Paste System for Air Permeability Resistance 

Air permeability index is the negative log of the Darcy coefficient of permeability (m/s), and it 

uses a log scale (Buenfeld and Okundi 2000). Therefore, lower air permeability index indicates 

higher permeability. As reported by Alexander and Beushausen (2010), the following 

interpretation can be applied to the results:  

 API >10.0 – Excellent 

 9.5< API<10.0 – Good 

 9.0< API<9.5 – Poor and  

 API < 9.0 – Very poor 

The effect of the paste system on 28-day and 90-day air permeability is presented in Figure 9. 

 

Figure 9. Required paste system for resistance against 28-day and 90-day air permeability 

Figure 9 shows that, for mixes containing Class F fly ash or slag cement, increasing paste 

volume above a certain value decreased permeability. When Vpaste/Vvoids was increased from 1 to 

2, air permeability decreased, likely because the mixtures with a low cementitious materials 

content had macro porosity. This result is consistent with the findings in the literature that 

compaction plays a more critical role than concrete microstructure on air permeability (Buenfeld 

and Okundi 2000). Once the required paste content (Vpaste/Vvoids of 2) was provided, further 

increasing the paste content slightly increased permeability because air tends to penetrate 

through the relatively porous paste faster than through aggregates. The replacement of ordinary 
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portland cement with various types of SCMs does not appear to have had a significant effect on 

air permeability. However, as concrete age increases, concrete becomes less permeable because 

cement hydration continues over time and the pore sizes get smaller. 

Summary 

Based on the data reported above, the following conclusions can be drawn: 

 A minimum void ratio of about 125% to 150% is suggested to achieve a minimum 

workability for the aggregates tested in this study. 

 The void ratio to achieve strength efficiently is between 125% and 175%. Excess paste 

appears to lead to reduced strength. 

 Increasing paste appears to reduce durability. 

 The measured performance of supplementary cementitious materials in binary and ternary 

systems was consistent with findings reported in the literature. 
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LABORATORY WORK – PHASE 2, EFFECTS OF THE AGGREGATE SYSTEM 

The second phase of the laboratory work involved conducting a more limited suite of tests to 

assess the effects of different aggregate systems. The only properties measured were those 

related to workability on the basis that the hardened properties of a mixture are primarily 

governed by the paste quality. 

Cementitious Materials 

The cementitious materials used in this phase of the work are described in Table 5. 

Table 5. Chemical composition of cementitious materials 

Chemical  

composition 

Type I/II  

cement, % 

Class C  

fly ash, % 

SiO2 20.10 36.71 

Al2O3 4.44 19.42 

Fe2O3 3.09 6.03 

SO3 3.18 1.97 

CaO 62.94 25.15 

MgO 2.88 4.77 

Na2O 0.10 1.64 

K2O 0.61 0.46 

P2O5 0.06 0.84 

TiO2 0.24 1.84 

SrO 0.09 0.32 

BaO - 0.67 

LOI 2.22 0.18 

 

Aggregates 

Two types of coarse aggregates were selected to represent commonly used aggregate types: 

rounded gravel and crushed limestone.  

Three nominal maximum sizes were obtained of each type: ¾ in., 1 in. and 1½ in. as coarse 

aggregate. A single natural fine aggregate was obtained from a local supplier. The gradations of 

aggregate are shown in Table 6 and Figure 10. 

In the following graphs, mixes are shown based on their constituent aggregate type (designated 

“G” for gravel and “LS” for limestone) and the nominal maximum size of aggregate (¾ in., 1 in., 

or 1½ in.).  
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Table 6. Gradations of coarse and fine aggregate 

Sieve size 

Cumulative percent passing 

Limestone Gravel Sand 

No. mm 1½ in. 1 in. ¾ in. 1½ in. 1 in. ¾ in. N/A 

1½ in. 37.5 96.2 100.0 100.0 100.0 100.0 100.0 100.0 

1 in. 25.0 27.9 99.3 100.0 59.2 100.0 100.0 100.0 

¾ in. 19.0 3.6 74.9 98.1 15.5 82.0 94.6 100.0 

½ in. 12.5 0.6 37.0 56.6 4.0 37.0 62.2 100.0 
3
/8 in. 9.5 0.4 19.2 24.7 1.0 13.0 41.2 100.0 

#4 4.75 0.3 2.7 2.5 0.3 0.6 8.5 98.9 

#8 2.36 0.3 0.7 0.6 0.0 0.2 1.0 92.4 

#16 1.18 0.2 0.5 0.5 0.0 0.2 0.0 77.5 

#30 0.60 0.2 0.4 0.4 0.0 0.1 0.0 47.7 

#50 0.30 0.2 0.4 0.4 0.0 0.1 0.0 11.0 

#100 0.15 0.2 0.3 0.4 0.0 0.1 0.0 0.8 

#200 0.075 0.2 0.3 0.0 0.0 0.1 0.4 0.0 

Specific gravity 2.67 2.68 2.66 2.71 2.72 2.72 2.66 

 

 

Figure 10. Gradations of coarse and fine aggregate 
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Four different gradations were prepared from each of the types and sizes: 

 A blend of a single coarse and fine combination at proportions selected to come as close as 

possible to the power 45 curve without re-sieving 

 Blends and re-sieved samples to get as close as possible to the power 45 curve 

 Blends and re-sieved samples to be close to the power 45 curve while staying within a 

Tarantula envelope (Ley et al. 2012) 

 An arbitrary 50/50 blend of coarse and fine with the intention of representing a poor 

gradation 

A total of 12 different aggregate combinations were prepared for a given aggregate type, as 

shown in Table 7. 

Table 7. Aggregate combinations 

Aggregate type 

Nominal maximum size of aggregates 

¾ in. 1 in. 1½ in. 

Gravel 

G0.75 Plain G1.0 Plain G1.5 Plain 

G0.75 ^45 G1.0 ^45 G1.5 ^45 

G0.75 Tarantula G1.0 Tarantula G1.5 Tarantula 

G0.75 50/50 G1.0 50/50 G1.5 50/50 

Limestone 

LS0.75 Plain LS1.0 Plain LS1.5 Plain 

LS0.75 ^45 LS1.0 ^45 LS1.5 ^45 

LS0.75 Tarantula LS1.0 Tarantula LS1.5 Tarantula 

LS0.75 50/50 LS1.0 50/50 LS1.5 50/50 

 

Chemical Admixtures 

A commercial vinsol-based air-entraining admixture was the only chemical admixture used in 

this phase. 

Tests 

The initial aim of the work was to determine the effect of different gradation systems on the 

voids in the combined material. All of the combinations were tested in accordance with ASTM 

C29 (2009) to determine their voids content. 
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The second aim of the work was to observe the effects of gradation on concrete workability. The 

following four systems were selected for testing in concrete mixtures: 

 G1.0 Tarantula 

 G1.0 50/50 

 LS1.0 Tarantula 

 LS1.0 50/50 

Each mixture was tested with Vpaste/Vvoids of 1.25, 1.50, and 1.75, achieved by adding paste to 

each mixture after the suite of tests was conducted. In many cases, mixtures with Vpaste/Vvoids of 

1.75 were not tested because the slump of those mixes already exceeded the maximum target 

value of 2 in. Care was taken to return all of the materials to the mixer after testing. All rounds of 

tests were completed within 90 minutes of initial mixing. The following tests were conducted: 

 Slump (ASTM C 143) 

 Air content (ASTM C 231) 

 Box (Cook et al. 2013). A visual rating of 2 or less is considered acceptable. 

 VKelly (Taylor et al. 2015). A VKelly Index of 0.8 in./√in. is considered acceptable. 

Results 

The voids in the aggregate systems (Vvoids) are shown in Table 8. 

 

Table 8. The voids in the aggregate systems, % 

  Plain ^45 Tarantula 50/50 

LS0.75 27.4 28.0 27.3 27.7 

LS1.0 26.6 28.9 26.3 27.5 

LS1.5 27.9 27.3 27.7 25.2 

G0.75 26.3 26.7 26.7 26.7 

G1.0 25.3 26.4 25.3 27.1 

G1.5 25.6 26.4 24.7 24.7 

 

The test results for the concrete mixtures are shown in Table 9, Figures 11 and 12, and Appendix 

A. 

 

  



25 

Table 9. Test results 

 

G1.0 50 LS1.0 50 

G1.0 

Tarantula 

LS1.0 

Tarantula 

Void Ratio 125 150 175 125 150 175 125 150 125 150 

Cementitious, 

lb./yd.
3
 424 500 543 462 544 617 427 505 444 524 

Air content, 

% 8.0 5.1 3.9 5.0 5.8 4.8 3.4 3.5 4.9 4.4 

Slump, inch 0.5 0.75 1 1 3 7 1 1.75 3 4 

Box, VR 4 4 3 4 2 4 2 2 2 1 

V-Kelly, in/√s 0.38 0.52 0.65 0.75 0.92   0.81 1.18 1.05 1.34 

 

 

 

Figure 11. Slump versus Vpaste/Vvoids 
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Figure 12. VKelly test index versus Vpaste/Vvoids 

Discussion 

The results of the voids tests were somewhat surprising. The range between the highest and 

lowest voids for a given nominal size were smaller than expected, considering that the void 

content of the aggregate system tested in Phase 1 was significantly lower at about 19%. The 

ranking of the different combinations was also unexpected in that the ^45 combinations did not 

always give the lowest voids. 

The mixture test results were also enlightening. The void ratio required to achieve a workability 

appropriate for slip-form paving was about 1.25 for the good gradations and 1.75 for the poor 

gradations for the mixtures tested. This finding supports the concept that the minimum required 

paste content depends on other factors, such as the aggregate shape.  

A satisfactory workability for the well-graded systems was achieved with significantly lower 

paste contents than for the poor gradations. The data support the contention that the Tarantula 

Curve provides an effective guideline for selecting a combined aggregate gradation.  

A surprising result was that crushed limestone yielded higher workability than the gravel 

systems. Also notable is that the slope of the lines are steeper for the limestone mixtures are 

steeper than the gravel, meaning that as paste content increases the response to vibration 

increases more for limestone. No explanation has been developed for these observations. It can 

be noted that the same fine aggregate was used in both mixtures, which is the ingredient that 

likely dominates effects on workability. 
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Conclusions 

Based on the observations in this phase, the following conclusions may be drawn: 

 The voids in different aggregate sizes and types should be measured. 

 The required void ratio varies depending on the aggregate system available, but a good 

starting point for trial batches is about 1.25. 

 Increasing paste content increases workability, as expected, albeit at different rates for 

different aggregate systems. 
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MIXTURE PROPORTIONING METHOD 

The data collected in Phases 1 and 2 have supported the proportioning concept discussed above: 

 Select an appropriate aggregate gradation system. Current recommendations are to stay 

within the Tarantula Curve while trying to stay close to the power 45 curve. A spreadsheet 

tool has been developed that allows the best combination of up to three aggregates to be 

obtained based on input sieve analyses using the solver function. Having determined the 

desired aggregate system, measure the voids volume (Vvoids) for the combination in the 

laboratory. 

 Select the paste parameters to achieve the desired strength- and durability-related 

performance: 

o Binder type and percentages 

o Air content 

o w/cm 

Select an initial Vpaste/Vvoids value as an input, probably in the range 1.25 to 1.75. These 

parameters are entered into the second page of the spreadsheet. 

 Calculate the paste content and aggregate content based on all the parameters determined 

above. This is achieved using another solver function on the third page of the spreadsheet. 

The output from the spreadsheet is a set of mixture proportions in lb./yd.
3
, excluding 

admixture dosages. 

 Prepare trial batches to assess fresh properties and adjust Vpaste/Vvoids and admixture dosages 

as necessary. Prepare a final trial batch and measure hardened properties. 

 

Screenshots from the spreadsheet pages are shown in Figures 13 to 15.  
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Figure 13. Screenshots from the spreadsheet pages for the aggregate system 
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Figure 14. Screenshot from the spreadsheet pages for paste quality 

 

Figure 154. Screenshot from the spreadsheet pages for mixture proportions 
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CONCLUSIONS 

Laboratory work has provided data to support an innovative proportioning approach based on the 

following steps: 

 Select a combined aggregate gradation to achieve workability and density. 

 Select the paste to achieve desired hardened properties (air void system, w/cm, and binder 

system). 

 Select a void ratio to achieve workability as determined in trial batches. 

A spreadsheet has been developed that aids in conducting these steps. 
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APPENDIX A. AGGREGATE GRADATIONS 

 

 

Gravel

0.75 1.0 1.5

No. mm Plain ^45 Tarantula 50/50 Plain ^45 Tarantula 50/50 Plain ^45 Tarantula 50/50

2" 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1-1/2" 37 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1" 25 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.0 82.4 88.0 82.4

3/4" 19 96.8 96.8 96.8 97.3 89.4 89.4 88.5 91.0 72.9 72.9 72.9 72.9

1/2" 12.5 77.6 79.2 77.6 81.1 62.7 70.4 71.2 68.5 55.6 59.0 55.6 59.0

3/8" 9.5 65.1 68.5 65.1 70.6 48.5 61.5 55.2 56.5 45.8 50.8 45.8 50.8

#4 4.75 45.2 47.9 47.9 53.7 40.8 43.4 38.8 49.8 31.3 35.4 31.3 35.4

#8 2.36 38.2 33.1 38.2 46.7 37.9 30.8 33.4 46.3 26.2 25.0 26.2 25.0

#16 1.18 31.5 22.4 31.5 38.7 31.8 18.5 28.0 38.8 21.6 16.7 21.6 16.7

#30 0.6 19.4 14.2 19.4 23.9 19.6 12.3 17.3 23.9 13.3 9.8 13.3 9.8

#50 0.3 4.5 4.5 4.5 5.5 4.6 4.6 4.0 5.6 3.1 3.1 3.1 3.1

#100 0.15 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.2 0.2 0.2 0.2

#200 0.075 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2

Sieve Size

Limestone

0.75 1.0 1.5

No. mm Plain ^45 Tarantula 50/50 Plain ^45 Tarantula 50/50 Plain ^45 Tarantula 50/50

2" 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1-1/2" 37 100 100.0 100 100.0 100.0 100.0 100.0 100.0 99.1 99.1 99.1 98.1

1" 25 100 100.0 100 100.0 99.6 99.6 99.5 99.6 82.2 82.2 86.5 64.0

3/4" 19 98.9 98.9 98.9 99.1 85.1 88.1 83.9 87.5 75.4 72.7 75.4 51.8

1/2" 12.5 75.6 80.3 80.3 78.3 62.6 70.3 65.4 68.5 56.1 58.5 56.1 50.3

3/8" 9.5 57.7 69.7 60.7 62.4 52.0 62.6 48.3 59.6 41.7 50.4 41.7 50.2

#4 4.75 44.7 49.0 44.7 50.7 41.7 43.1 37.3 50.8 31.4 35.7 31.4 49.6

#8 2.36 40.8 33.6 40.8 46.5 37.9 29.6 33.7 46.6 28.6 24.8 28.6 46.4

#16 1.18 34.2 22.2 34.2 39.0 31.7 19.8 28.2 39.0 23.9 16.2 23.9 38.9

#30 0.6 21.1 14.2 21.1 24.1 19.6 11.6 17.4 24.1 14.8 9.4 14.8 24.0

#50 0.3 5.1 5.1 5.1 5.7 4.7 4.7 4.2 5.7 3.6 3.6 3.6 5.6

#100 0.15 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5

#200 0.075 0 0.0 0 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.1

Sieve Size
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